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DESIGN OF A RESILIENT RIDESHARE-BASED SMALL
SATELLITE CONSTELLATION USING A GENETIC ALGORITHM

Katherine E. Mott∗, Dr. Jonathan T. Black†

Responsive and resilient space-based systems are needed to satisfy changing mis-
sion requirements and react to unforeseen challenges. This paper studies the abil-
ity of a constellation constructed from commercial-off-the-shelf parts and launched
using rideshare to provide imaging coverage over a small region in the event of a
disaster, such as an outbreak of wildfires. A genetic algorithm and model-based
systems engineering techniques are used to evaluate rideshare constellations in
both the nominal case and the case in which some satellites have failed. Novel
methods for determining reachability between two orbits and for determining re-
visit metrics for degraded constellations are presented.

INTRODUCTION

The use of small satellites in both industry and academia is increasing as a result of both the minia-
turization of satellite components and the availability of commercial off-the-shelf (COTS) compo-
nents. According to a study published by Bryce Space and Technology, the number of nanosatellites
(1-10kg), picosatellites (0.1-1kg), and femtosatellites (0.01-0.1kg) has increased tenfold between
2012 and 2017, with about 300 satellites launched in 2017 that fall into these classes. For compari-
son, the number of satellites weighing more the 500kg remained nearly constant between 2012 and
2017 with about 60 satellites launched per year [1]. As the number of nanosatellites and other small
satellites continues to increase, new tools and methodologies are needed to accommodate the unique
challenges and capabilities of these systems. The benefits of nanosatellites include the availability
of a standard form factor (the CubeSat), low cost, COTS components, and short build times. The
disadvantages of nanosatellites include reduced capability, shorter lifetimes, higher failure rates,
and a lack of cost-effective launch opportunities.

The disadvantages outlined above can be mitigated through intelligent design that keeps the limits
of nanosatellites in mind. For example, the capabilities of a large satellite can be replicated by
launching several nanosatellites with different payloads, a process known as disaggregation. Short
satellite lifetimes require replenishing the constellation as time passes if the mission lifetime exceeds
the satellite lifetime. The low cost of each nanosatellite can make such a method more cost effective
than a single satellite with a long lifetime, in some cases. Furthermore, nanosatellites are appropriate
for missions of short duration or for providing a temporary solution while a more permanent system
is designed and manufactured. The final two issues, high failure rates and launch limitations, are
the focus of this paper.
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Figure 1: Representative nonuniform satellite distribution in an orbital plane.

BACKGROUND

Spacecraft can fail for a variety of reasons, including launch failures, radiation, thermal stresses,
and electronics failures [2]. The small form factor, low-cost satellites known as CubeSats are par-
ticularly susceptible to failure due to their use of COTS parts, low budgets, and high risk tolerance.
A 2017 study by the Aerospace Corporation found that academic CubeSat missions failed 55% of
the time, while commercial CubeSat endeavors failed 23% of the time [3]. Despite their failure rate,
CubeSat constellations can enable critical space missions by providing rapid response due to their
short build times. Additionally, their small size allows them to be launched as secondary payloads
when their mission has some flexibility in the required orbital configuration.

However, the effect of the failure of one or more satellites on the ability of the constellation to
perform its mission must be assessed. Previous work has measured constellation resilience based on
the predicted failure rate [4] and the predicted number of satellites on orbit [5]. Stenger performed
network analysis for a degraded Iridium constellation, selecting the worst-case removals in batches
of 12 by finding the satellites that appeared most often in the packet paths and removing them [6].
However, this method is not mathematically rigorous for nonuniform constellations because the
problem of satellite access cannot be solved recursively. To illustrate, consider a case in which
satellites are spaced unevenly in an orbital plane, as shown in Fig. 1. Assume the satellites are
placed in an equatorial orbit, with ground stations also on the equator. The largest gap in coverage
occurs between satellites with the largest spacing. In the nominal case, the largest gap occurs be-
tween satellites C and D. If a single failure occurs, the satellite whose removal would most increase
the largest gap is satellite C, denoted by an orange dot. In this 1-removal case, the largest possible
gap would occur between satellites B and D after the removal of satellite C. If the 2-removal case
continues from the 1-removal case by assuming C has already been removed, the next most damag-
ing satellite to remove is B. Using recursion results in the largest gap being between A and D, with
B and C removed. However, considering the 2-removal problem independently from the 1-removal
problem shows that the best two satellites to remove are D and E, denoted in red. In this case, the
largest gap is between C and F after the removal of D and E. Because the C-F gap is larger than the
A-D gap, it has been shown that relying on recursion to determine the worst-case removals yields
an incorrect answer. It is therefore beneficial to develop a rigorous methodology for determining
the satellites whose removal is most damaging to the constellation performance.
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Another issue in the deployment of nanosatellite constellations is getting all of the assets into
orbit. In traditional spacecraft constellations, the launch costs are a relatively small portion of
the overall budget—an example scenario in Ref. [7] predicts a 14% launch cost. In the case of
nanosatellites, however, the cost of the spacecraft itself is much smaller, a couple million dollars
at most. Some nanosatellites are as cheap as a couple hundred thousand dollars [8]. Because
launch vehicles cost tens to hundreds of millions of dollars, the use of dedicated launches for low
cost missions is infeasible unless hundreds of satellites are going to the same plane [9]. However,
small satellites can be launched as secondary payloads via rideshare programs for about $30,000
per kilogram [8]. Additionally, academic groups may qualify for free launch services through the
Educational Launch of Nanosatellite (ELaNa) missions [10]. The downside of constellations built
using rideshare alone, sometimes called ad hoc constellations, is that the irregular distribution of
satellites results in large gaps in coverage compared to a symmetric constellation like a Walker
constellation. Previous studies have quantified these differences, but have shown that performance
can be improved through optimization of the rideshare selection. One such study used a Monte
Carlo analysis to characterize the range of performance for ad hoc constellations providing global
coverage [11]. Another study used a multi-objective genetic algorithm to determine an optimal
rideshare manifest for providing global coverage [12]. That paper also discussed resiliency of ad
hoc constellations, though only for a specific solution produced by the genetic algorithm and not as
an optimization criterion.

METHODOLOGY

The Disaggregated Integral Systems Concept Optimization Technology (DISCO-Tech) method-
ology was used to formulate and solve a rideshare reconfiguration constellation optimization prob-
lem. The DISCO-Tech algorithm is modular, with each module performing a different task of the
optimization. Key modules are described below and in previous works [13, 14].

Optimization

DISCO-Tech uses a modified version of the epsilon nondominated sorting genetic algorithm II
(eNSGA-II) to solve multiobjective optimization problems [15]. It combines the epsilon dominance
feature of eNSGA-II with the archive feature of the BORG genetic algorithm but maintains the use
of generations to facilitate ease in parallelization [16]. It differs from BORG and eNSGA-II in that
it uses a variable length crossover operation, as described in Ref. [13].

Reachability

Previous papers on constellation reconfiguration have restricted analysis to specific sets of ma-
neuvers. One study restricted reconfiguration to in-plane maneuvers, then used a genetic algorithm
to solve for the two-burn transfers yielding the best coverage in the final configuration [15]. Other
studies restrict the initial and final constellations to known sets of orbits, presolving for the fuel
needed to go between each combination of orbits then solving the assignment problem to find the
optimal set of transfers [17–19].

A general framework was desired to determine the reachability of one orbit from another when
neither the orbits are known a priori nor are the initial and final orbits confined to the same plane.
Although methods exist for generating the reachable set [20–23], they rely on numerical simulation
and are too computationally expensive to call for each solution during the optimization, since the
reachable set will change as the initial orbit changes.
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Instead, an estimation of the fuel used is generated using a linearized version of Gauss’s Varia-
tional Equations (GVE). Previous research linearized GVE about the final orbit and used the result-
ing equations with model predictive control (MPC) to calculate the required controls to maneuver
from one orbit to another [24]. This linearization serves as the basis for our approach, though the
MPC process was deemed unnecessarily costly. We need only the total fuel expenditure, not the en-
tire control history. Furthermore, the linearization presented in Ref. [24] is improved upon through
the use of the modified equinoctial orbital elements, by treating the true longitude as an independent
parameter, and by improved analysis of the validity of the linearization. It is assumed that the final
value of the true longitude is irrelevant, as it can be set afterward by temporarily raising or lowering
the orbit using a comparatively small amount of fuel or by holding the satellite at an intermediate
stage in its orbit until the desired phasing has been reached. It is also assumed that the maximum
acceleration of the spacecraft does not change over time despite the change in the spacecraft’s mass.

GVE are of the form
dx
dt

= f(x) +B(x)u (1)

where x is the vector of orbital elements and u = [ur, uθ, uh]T are the control accelerations in the
local vertical local horizontal (LVLH) frame. This formulation uses the set of modified equinoctial
orbital elements (MEOE), a set of nonsingular elements defined in Ref. [25]. The MEOE are de-
noted by x = [p, f, g, h, k, L]T , where the true longitude L is the only rapidly changing variable. p
is the semiparameter of the orbit. The remaining four elements lack obvious physical meaning but
are defined as f = e cos(ω + Ω), g = e sin(ω + Ω), h = tan( i2) cos(Ω), and k = tan( i2) sin(Ω),
where e is the eccentricity, i is the inclination, ω is the argument of periapsis (AOP), and Ω is
the right ascension of the ascending node (RAAN). f(x) ∈ R6 shows the growth of the elements
in the absence of control, and B(x) ∈ R6×3 is the input effect matrix. These matrices, defining
q = 1 + f cos(L) + g sin(L) to simplify notation, are

f =


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0
0
0
0
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q
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
(2)

With the exception of true longitude, the orbital elements are constant in the absence of pertur-
bations like oblateness effects. Form a reduced set of elements z = [p, f, g, h, k]T . Eq. (1) can be
rewritten as

d

dt

[
z
L

]
= f(z, L) +B(z, L)u (3)

Since the first five elements of f(x) are zero for the two body problem, the growth of these ele-
ments can be written as

dz
dt

= B(z, L)u (4)
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Figure 2: Thrust acceleration limit for 45◦ inclined orbits at various eccentricities (left) and for
circular orbits at various inclinations (right).

where B(z, L) is the first five rows of B(z, L). Note that the equation is affine in u but nonlinear in
z due to the dependence of B on z.

It is advantageous to treat the true longitude L as an independent parameter. The growth of L
over time is dL/dt =

√
µpq2/(p2) +

√
p/µ(h sin(L)− k cos(L))uh/q, which can be rewritten as

dL

dt
=

√
µ

p3
(1 + e cos(ν))2 +

√
p

µ

tan(0.5i) sin(ν + ω)

1 + e cos(ν)
uh (5)

The classical orbital elements are used to provide a sense of physical understanding, with ν being
the true anomaly. The influence of the control on the growth of L is maximized when the second
term of the previous equation is maximized. tan(0.5i) and 1 + e cos(ν) are nonnegative for all
admissible values i ∈ [0, π], e ∈ [0, 1), and ν ∈ [0,∞), the control’s impact on L is maximized
if uh = umaxsign(sin(ν + ω)). The upper value on the product sin(ν + ω)uh is umax and occurs
when ν = π/2−ω. Use this upper value when forming the ratio R of the maximum possible control
growth to the secular growth,

R =
umaxa

2(1− e2)2 tan(0.5i)

µ(1 + e cos(ν))3
(6)

Eq. (6) shows that the highest possible impact of the control comes at apoapsis when assuming
maximum thrust, though this value can only truly be reached if ω = 3π/2 due to phasing with
the sine term that was set to its maximum. By setting an upper limit on the instantaneous value
of the ratio, a maximum allowable thrust acceleration for various combinations of a, i, and e can
be calculated. Note that the equation is singular for an inclination of zero, since thrusting in the
angular momentum direction at this inclination will not affect the true longitude. Fig. 2 shows
the maximum allowable thrust acceleration such that the ratio R at apoapsis will not exceed 0.1.
When eccentricity is nonzero, only semimajor axes producing a periapsis altitude above 300km are
included. When the control accelerations are smaller than those described in the plot for a given
combination of semimajor axis, eccentricity, and inclination, the impact of the control on the growth
of the true longitude can be ignored.

The bound on R of 0.1 is conservative because Eq. (6) assumes a thrust profile designed to
maximize the control’s impact on the true longitude and neglects the impact of the sinusoid on
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the instantaneous ratio. Because the goal of a maneuver is generally to change one of the other
parameters, the optimal thrust profile is unlikely to match uh = umaxsign(sin(ν + ω)).

Nanosatellites tend to employ micropropulsion systems with low thrusts on the order of millinew-
tons [26]. The control influence on L can be safely ignored for these cases. High-thrust cubeSat
propulsion systems with up to 1.25N of thrust are in development [27]. Assuming that these systems
would be used exclusively with larger CubeSats with a dry mass of at least 5kg, the corresponding
acceleration would be at most 0.25m/s2. From the plots, it can be seen that low Earth orbits (LEO)
with eccentricity less that 0.4 and inclinations less than 135◦ will satisfy this constraint. Because
these are the orbits primarily used by nanosatellites due to power and instrument limits, the assump-
tion that the control does not significantly affect the true longitude will hold. The rate of change
of L is then dL/dt =

√
µpq2/(p2). The values of L can be approximated either by holding the

MEOE fixed at either the initial or final values or by linearly interpolating between the initial and
final values and calculating the growth of L at each time step. The approximation of the secular
growth rate distorts the relationship between time steps and steps of L. This distortion can cause
gaps or overlaps in L between time steps. For example, assume L0 = 0 at t0 = 0. If the predicted
value of L at t1 = 100 is L1p = π/2 but the actual value is L1a = π/2− 0.01, the 0.01 that forms
the gap between the actual and predicted values will not be used. The impact of this approximation
is difficult to quantify, but the verification shows that the effect does not invalidate the results. The
effect can be mitigated by using smaller timesteps or by forcing the semimajor axis and eccentricity
to take certain values at certain times. For example, because out-of-plane maneuvers are less costly
at high altitudes, it may be appropriate to restrict the semimajor axis to a linear increase with some
error margin if an altitude increase is desired with the out of plane maneuver. The current formu-
lation merely linearly interpolates values of a and e between the initial and final values over the
analysis period, then uses those values to calculate the true longitude. Using this process, true lon-
gitude can be treated as a function of time alone and can be precalculated, allowing it to be treated
as an independent parameter in the linear program.

Linearization of Eq. (4) about some stationary orbit zs gives

dz
dt

=

(
B(zs, L) +

∂B

∂z

∣∣∣∣
z=zs

∆z
)

u +HOT (7)

where ∆z = z − zs. ∂B/∂z in the second term is a tensor of rank three. Neglect the higher order
terms. The equation for a single element zi is given below for clarity, with bij being the element of
B in the i-th row and the j-th column.

dzi
dt

=
[
bi1 bi2 bi3

]
u +


∆p
∆f
∆g
∆h
∆k


T 

∂bi1/∂p ∂bi2/∂p ∂bi3/∂p
∂bi1/∂f ∂bi2/∂f ∂bi3/∂f
∂bi1/∂g ∂bi2/∂g ∂bi3/∂g
∂bi1/∂h ∂bi2/∂h ∂bi3/∂h
∂bi1/∂k ∂bi2/∂k ∂bi3/∂k


∣∣∣∣∣∣∣∣∣∣
z=zs

u (8)

= (bi + (Ji∆z)T )u (9)

The second term results in a nonlinear equation, since the term contains a product of ∆z and u.
Because this formulation is only an approximation of the total fuel used, we drop this term to
maintain the linearity of the system. This simplification is valid if the magnitude of the derivatives
of B are small compared to the values of B itself. We shall examine the ranges over which this
assumption is valid.
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Both B and ∂B/∂z vary with L, so it is necessary to examine the relative behavior of the two
terms over an entire orbit. Furthermore, due to the differences in magnitude of the rates of change
of the various orbital elements, it is prudent to examine each one separately. To determine the
allowable extent of the nonlinearity due to a variation in one of the MEOE, set a bound on the
ratio of the magnitudes of the nonlinear and linear terms causing a change in element i due to the
difference in element j from the stationary orbit,

Rij =
|∆zj |‖jij‖
‖bi‖

=
|∆zj |

√
(∂bi1/∂zj)2 + (∂bi2/∂zj)2 + (∂bi3/∂zj)2√

b2i1 + b2i2 + b2i3

(10)

jij is the j-th column of the Ji matrix. By setting an upper limit on the value of Rij , we can develop
bounds on each of the orbital elements. Since the bounds on ∆zj must satisfy the imposed limits
on Rij ∀i ∈ [1, 5], we select the smallest value of ∆zj calculated by the five equations. This limit
should be satisfied for all values of L. However, some elements of B, such as b21, go to zero at
certain values of L. As a result, the ratio near these points is poorly defined. Furthermore, a large
Rij value occurring when bi is small still results in a small magnitude change in bi. In order to
avoid these singularities, the denominator used in Eq. (10) is not the instantaneous value for a given
L but the average value calculated by averaging ‖bi‖ over L. Call this average value ‖bi‖avg. Since
all terms in the numerator of Eq. (10) are a function of L, select the L value that gives the largest
ratio R to ensure the most conservative bounds. Mathematically, this can be written by inverting the
Eq. (10) to obtain

|∆zj | ≤ min
i∈[1,5]

(
min

L∈[0,2π]

(
Rmax

‖bi‖avg
‖jij(L)‖

))
(11)

Using the process described above, bounds on the linearization are generated for an orbit with
nominal values of a = 7000km, e = 0.1, i = π/4, Ω = π/6, and ω = π/12. In order to determine
the impact of the initial value of each orbital element on the bounds, the initial orbital elements are
varied one at a time while holding the others fixed. a is varied from 6678km to 16378km, e is varied
from 0 to 0.8, i is varied from 0 to 180◦, Ω is varied from 0 to 360◦, and ω is varied from 0 to 360◦.
Fig. 3 shows the results for the most interesting relationships. The upper bound is shown in blue,
the nominal value in yellow, and the lower bound in red.

The main determining factor in the semimajor axis bounds is the semimajor axis, with larger
semimajor axes having larger bounds. For a low Earth orbit, a limit of |∆a| = 500km ensures
the bounds on the linearization are satisfied. Similarly, eccentricity is the main determining factor
on the eccentricity bounds with larger eccentricities having smaller bounds, though RAAN, AOP,
and high inclination influence the eccentricity bounds as well. For an orbit with low eccentricity,
bounds of about 0.1 are acceptable. The inclination bounds decrease with increasing inclination
and eccentricity. However, the bounds are so large and the fuel required to enact a change in
inclination so great that it is unlikely that a satellite would maneuver more than a couple of degrees
in inclination, rendering the linearization valid for all practical cases barring a retrograde orbit with
inclination greater than 120◦. Likewise, the bounds on RAAN and AOP are large and unlikely to be
exceeded, so these plots are not included.

Overall, the linearization will hold when the semimajor axis error is kept below 500km, the
eccentricity error kept below 0.1 for low eccentricities and below 0.05 for eccentricities near 0.5,
the eccentricity kept below 0.5, the inclination kept below 120◦, changes in AOP kept below 50◦,
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Figure 3: Element limits for valid linearization under changing initial element values.

and changes in RAAN and inclination kept below 10◦ for prograde orbits and 5◦ for retrograde
orbits.

Now that it has been shown that the nonlinear term in Eq. (7) can be neglected in the cases
described above, we can use the linear equation

dz
dt

= B(zs, L)u (12)

to approximate the change in the orbital elements over time.

Applying the variation of constants formula to the above equation gives

z(t) = z0 +

∫ t

t0

B(zs, L(v))u(v)dv (13)

If we discretize the system by setting t = k∆t, using it to calculate Lk = L(k∆t), and treating B
and u as being fixed at each time step, the equation becomes

zk+1 = z0 + ∆t

k∑
j=0

Bjuj (14)

With this equation, the problem of reachability can now be formulated as a linear program (LP). To
enforce the upper and lower bounds on u, create separate variables u+ and u−, both in [0,umax],
such that u = u+ − u−. The LP formulation can be written as

Minimize
∑
k

∑
i

u+
ik + u−ik
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with decision variables :

u+
ik ∈ [0, umax] ∀ k = 0, 1, . . . , kf , i ∈ {r, θ, h}
u−ik ∈ [0, umax] ∀ k = 0, 1, . . . , kf , i ∈ {r, θ, h}
such that :

zfd − ζf ≤ z0 + ∆f

kf∑
j=0

Bjuj ≤ zfd + ζf

where ζf is the allowable error in the final state, and the desired final state is zfd. Due to the fact that
the control is held constant during each step, reaching an exact state may be impossible, requiring
the inclusion of error bounds. Once the optimal solution is known, the orbital elements at each step
k can be calculated using Eq. (14). The total fuel required can be approximated as the value of the
objective function times ∆t.

Two simple scenarios are used to test the problem formulation. First, the problem of raising
a circular orbit from 1000km in altitude to 1500km in altitude using a maximum acceleration of
0.01m/s2 is considered. According to Ref. [28], the optimal low thrust orbit raise for a circular
orbit is a continuous thrust in the velocity vector direction and consumes a total delta-v of ∆v =∣∣√µ/a0 −

√
µ/af

∣∣. The time needed to complete the maneuver is tf − t0 = (µ/umax)
∣∣a−1/2

0 −
a
−1/2
f

∣∣. For the given problem, the required ∆v according to the equation is 237.1m/s.

The linear program was solved using the YALMIP Matlab toolbox interfacing with Gurobi and
CPLEX [29–31]. The scenario was permitted to run for 1.05 times the predicted time needed to
complete the maneuver. The semimajor axis was assumed to vary linearly between the initial and
final values, with these interpolated values being used in the Bk matrices at each time step. The
estimated velocity required for the orbit raise is 235.4m/s, resulting in a deviation from the analytical
solution of less than 1%.

The second scenario requires an inclination change of two degrees within ten orbits. The orbit
is circular and has an altitude of 1000km. The ∆v required for an impulsive transfer is ∆v =
2v sin ∆i

2 . If multiple small impulsive manuevers are performed rather than a single large maneuver,
the required velocity change is ∆v = 2nv sin ∆i

2n , where n is the number of maneuvers. Assuming
the maneuver is conducted using a max acceleration of 0.01m/s2 over the course of forty orbits
(eighty maneuvers), the required ∆v = 256.6m/s. Since only about three m/s is required per
maneuver, it is sufficient to assume the ∆v required for an instantaneous small inclination change
is approximately equal to that required for an inclination change maneuver spread over a couple
of minutes using low thrust. The result from the equation should be comparable to that provided
by the linear program. Indeed, the linear program predicts a ∆v of 253.9m/s, yielding an error
of 1%. These simple examples, when combined with the mathematical validation provided above,
bound the accuracy of the linearization approach in predicting the ∆v required for a low Earth orbit
transfer. The predicted ∆v can then be used to determine the reachability of one orbit from another.

Dynamics

The scenario is divided into periods during which no maneuvers occur. During such a period, the
orbital elements of the satellites over time are found using the mean anomaly, since M −M0 = nt,
where n is the mean motion. The mean anomaly is then used with Kepler’s equation, M = E −
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e sin(E), to obtain the eccentric anomaly E. Since Kepler’s equation is transcendental in E, bicubic
interpolation is used to solve for E. E can then be used to obtain ν. The change in the other classical
orbital elements over time is calculated using the secular growth caused by J2 and J4, as described
in Ref. [32]. All maneuvers are assumed to be instantaneous. The scenario is propagated until a
maneuver time is reached. The change in orbital elements or in velocity is then added to the current
state. Propagation then continues until the next maneuver is reached.

Coverage

Because the calculation of satellite revisit metrics is nonlinear and computationally expensive, we
compute the rise and set times for the nominal constellation, the satellite constellation from which
no assets have been removed. The method used for calculating the rise and set times is adapted
from the methods developed by Alfano [33]. Alfano uses a coarse time step to find the satellite
positions over time, then uses quintic interpolation to approximate the rise-set times of the satellites
between the steps of the propagation. Alfano developed equations describing constraints on the
maximum range, minimum and maximum elevation angles, and minimum and maximum azimuthal
angles. For the purposes of this paper, we will concern ourselves with only the maximum range and
minimum elevation equations,

fR(t) = R(t)−RLIM (15)

fφ(t) =

(
cos−1

{
cos[φ(t)]

R(t)

}
− φ(t)

)
−
{

cos−1

[
cos(φLIM )

R(t)

]
− φLIM

}
(16)

where R(t) is the range from a satellite to a ground station at time t, φ(t) is the elevation angle
from the ground station to the satellite, RLIM is the maximum allowable range, and φLIM is the
minimum allowable elevation angle. Additionally, we develop an equation for a constraint on the
maximum off-boresight angle of the ground station with respect to the satellite. The off-boresight
angle θ(t) can be calculated as

θ(t) = cos−1

[
R(t) · p(t)

‖R(t)‖

]
(17)

where R(t) is the vector from the satellite to the ground station and p(t) is the unit vector in the
direction of the boresight axis of the sensor.

Since the off-boresight angle is analogous to an elevation angle from the satellites perspective,
the equation is a slight modification of Eq. (16),

fθ(t) =

(
cos−1

{
cos[θ(t)]

R(t)

}
− θ(t)

)
−
{

cos−1

[
cos(θLIM )

R(t)

]
− θLIM

}
(18)

where θLIM is the maximum allowable off-boresight angle.

In order to find the intervals that contain rise and set times without interpolating through every
time step, find the time steps in the coarse propagation for each satellite-station combination for
which fR(t) ≤ 0, fφ(t) ≤ 0, and fθ(t) ≥ 0. During these times, the satellite can access the ground
station. Of these time steps, find the times that are near the beginning interval of access by finding
points that are more than one time step away from the previous point satisfying the constraints.
Likewise, find the times that are near the end of an interval by finding points that are more than
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one time step away from the next point satisfying the constraints. Use either fR(t), fφ(t), or fθ(t),
whichever is most restrictive at each point, for the quintic interpolation as described by Alfano to
get the rise and set times [33]. The rise/set time occurs when the most restrictive function is equal
to zero.

For each ground station, a matrix is constructed to describe the access to that station over time.
The rows correspond to the sorted rise and set times, while the columns correspond to the satellites.
The matrix is binary such that a one in the (i, j) place indicates that the j-th satellite can access the
ground station from the i-th time until the (i+ 1)-th time. There is a corresponding vector of times,
Tk, to match the rows of the matrix. For instance, assume the k-th station is accessible by three
satellites. The scenario starts at time zero. Satellite 1 can access the station from 5 minutes to 12
minutes. Satellite 2 can access the station from 10 minutes to 20 minutes. Satellite 3 can access the
station from 30 minutes to 35 minutes. The scenario ends at 60 minutes. The resulting time vector
Tk and access matrix Ak would be

T =



0
5
10
12
20
30
35
60


, A =



0 0 0
1 0 0
1 1 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0


(19)

Form an access array A by concatenating the accesses for each station and a time matrix T .
Tik is the i-th rise or set time for the k-th station. Aijk is one if the j-th satellite can access the
k-th ground station between Tik and T(i+1)k. Also calculate the length of each time step, ∆Tik =
T(i+1)k − Tik. The access array and time matrix can be used to calculate revisit metrics and in the
resilience calculations outlined in the following section.

Resilience

This section discusses a method for formulating the problem of finding the combination of losses
of assets most damaging to the constellation performance as a linear program. The access array
described in the previous section can be used in examining the performance of the degraded con-
stellation. If the number of satellites is small and the number of predicted removals/failures is small,
it is simple to check every combination of removals to determine the most damaging case. Simply
remove the columns of the access array corresponding to the removed satellites and calculate the
resilience metrics. However, because the problem grows combinatorially, evaluating all combi-
nations directly for large problems quickly becomes infeasible. For example, Stenger considered
12-removal, 24-removal, and 36-removal cases for the 66 satellite Iridium constellation [6]. The
smallest of these cases has 4.92× 1012 combinations that would need to be evaluated.

We therefore turn to mathematical programming to solve the problem of finding the worst com-
bination of satellite removals, which can be formulated as a mixed integer linear program (MILP).
The exact formulation will depend on the metric used in the optimization, but here we treat only the
problem of finding the combination of removals that maximizes the longest gap in coverage seen by
any of the ground stations (maximum revisit time over all points). Call the number of satellites in
the nominal constellation ns, the number of removals nr, and the number of ground stations ng.
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Define the decision variable xj ∈ {0, 1} ∀ j = 1, 2, . . . , ns, a binary satellite inclusion vari-
able that is one if the j-th satellite is active and zero otherwise. To produce the correct number of
removals, we define the constraint

ns∑
j=1

xj = ns − nr (20)

It is then necessary to determine how many satellites are available to each station at any given
time. The access sum, Aik, gives the number of satellites available to ground station k at its i-th
time step,

Aik =

ns∑
j=1

Aijkxj (21)

We can then calculate whether a sufficient number of assets are available for access at each period.
Define nc as the number of assets required to be in view of the ground station simultaneously for
successful access. The calculation of this access requires the introduction of a new binary variable,
Yik ∈ {0, 1}. Yik is one if the required number of assets are accessible by station k at time i and zero
otherwise. In order to force Yik to take the appropriate value, we introduce the following constraints.
Note that the second is a big-M constraint. Set M = ns − nc + 1.

Yik ≤
Aik
nc

∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng (22)

MYik ≥ Aik − nc + 1 ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng (23)

Eq. (22) ensures that Yik is zero if insufficient satellites are available. Eq. (23) ensures that Yik is
one if at least nc satellites are available.

The maximum revisit time of a ground station is the longest period for which that station is
without coverage. The maximum of the maximum revisit times is the largest gap in coverage for
any station in the scenario. The formulation begins with the definition of an accumulator variable
aik ∈ R≥0. The accumulator variable counts the amount of time at each step since the end of the
previous pass. During a pass and immediately after the pass ends, the accumulator should be zero.
The constraints below are big-M constraints. To distinguish from the big-M value used in Eq. (22),
the big-M value in these constraints will be referred to as M2. The most conservative value for M2

is the length of the scenario plus a small constant. However, using smaller values to aid convergence
is encouraged if it is guaranteed that no gap will ever exceed the value chosen for M2.

The constraints needed to force aik to take the appropriate value are slightly different for the first
time step than for the rest of the scenario. a1k has the constraints

a1k ≥ ∆T1k −M2Y1k ∀ k = 1, 2, . . . , ng (24)

a1k ≤ ∆T1k +M2Y 1k ∀ k = 1, 2, . . . , ng (25)

These constraints ensure that a1k will be equal to the length of the first time step if there is no access
when the scenario begins. The constraints for the rest of the time period are

aik ≥ a(i−1)k + ∆Tik −M2Yik ∀ i = 2, 3, . . . , nt − 1, k = 1, 2, . . . , ng (26)

aik ≤ a(i−1)k + ∆Tik +M2Yik ∀ i = 2, 3, . . . , nt − 1, k = 1, 2, . . . , ng (27)
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Likewise, these constraints ensure that aik will be equal to the previous accumulator value plus the
time step if there is no access at the current time. Finally, aik must be zero if there is access at the
current time, so

aik ≤M2(1− Yik) ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng (28)

The length of the largest gap is equal to the largest value of aik. To find this value, introduce a
variable amax ∈ R≥0. Because the goal is to maximize amax, there must be an upper bound on
amax to prevent it growing unbounded. Therefore, it is required that amax is less than or equal to
exactly one of the values of a. To this end, introduce additional binary variables δik ∈ R(nt−1)×ng .
This formulation will drive amax to the largest value of a and can be enforced with the constraints

amax ≤ aik + (1− δik)M2 ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng (29)
nt−1∑
i=1

ng∑
k=1

δik = 1 (30)

The full formulation for the maximization problem is

Minimize − amax
with decision variables :

xj ∈ {0, 1} ∀ j = 1, 2, . . . , ns

Yik ∈ {0, 1} ∀ i = 1, 2, . . . , nt, k = 1, 2, . . . , ng

aik ∈ R≥0 ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng

amax ∈ R≥0

δik ∈ {0, 1} ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng

such that:
ns∑
j=1

xj = ns − nr

Yik ≤
∑ns

j=1Aijkxj

nc
∀ i = 1, 2, . . . , nt, k = 1, 2, . . . , ng

MYik ≥
ns∑
j=1

Aijkxj − nc + 1 ∀ i = 1, 2, . . . , nt, k = 1, 2, . . . , ng

a1k ≥ ∆T1k −M2Y1k ∀ k = 1, 2, . . . , ng

a1k ≤ ∆T1k +M2Y 1k ∀ k = 1, 2, . . . , ng

aik ≥ a(i−1)k + ∆Tik −M2Yik ∀ i = 2, 3, . . . , nt − 1, k = 1, 2, . . . , ng

aik ≤ a(i−1)k + ∆Tik +M2Yik ∀ i = 2, 3, . . . , nt − 1, k = 1, 2, . . . , ng

aik ≤M2(1− Yik) ∀i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng

amax ≤ aik + (1− δik)M2 ∀ i = 1, 2, . . . , nt − 1, k = 1, 2, . . . , ng
nt−1∑
i=1

ng∑
k=1

δik = 1

13



Problem size This formulation has a total of (2nt − 1) × ng + ns binary variables and (nt −
1)× ng + 1 continuous variables. State-of-the-art MILP solvers can handle hundreds of thousands
of variables, but the ability of a solver to find a solution is dependent on more factors than simply
the number of variables [34]. The distance between the relaxed and actual solutions, the number
of constraints, and the ability of the solver to quickly find a feasible solution are only some of the
factors that affect solve time. Some decision variables can be set a priori, reducing solve time. For
example, any interval where the nominal case did not have access to a sufficient number of assets
will preclude the reduced case from having a sufficient number of assets, allowing the corresponding
values of Yik to be set to zero. Similarly, if the nominal case had sufficient assets such that removing
the maximum number of assets would not affect access during that period, the corresponding values
of Yik can be set to one. Another method for decreasing runtime is to consider each ground station
separately. Because the runtime of an MILP solver will increase in a nonpolynomial fashion with
number of variables, it may be faster to run several small programs than one large one, depending
on the solver overhead and the solve times for the two problem sizes. Meaning, one program with
100,000 variables will generally be slower than one hundred programs with one thousand variables
each. The results can then be combined by choosing the highest maximum revisit time from among
all the ground stations.

The number of ground stations and time steps both have a more significant direct impact on the
number of variables, though the number of times is a function of the number of satellites. It is
possible to reduce the size of the problem by limiting the number of ground stations or the total
duration of the scenario. Constellations with repeating ground tracks or whose formulations permit
short analysis times will benefit most from this formulation due to the smaller number of variables
required for such problems. The formulation is only beneficial in large combinatorial cases, as small
cases can be handled more rapidly by full enumeration of all removal possibilities.

SCENARIO DESCRIPTION

One benefit of both nanosatellites and rideshare launches is the ability to use them on short notice.
This feature is especially beneficial in the event of an emergency, when there is insufficient time to
build and deploy a traditional satellite constellation. To simulate such a scenario, consider the case
of fire detection over California. The goal is to deploy a constellation of nanosatellites constructed
of COTS parts using rideshare opportunities in a timely manner. The nanosatellites are identical and
have the following subsystems:

• Propulsion: MPS-130 2U propulsion module by Aerojet Rocketdyne with a thrust of 1.25N,
a specific impulse of 235s and a fuel mass of 1.4kg [27]

• Antenna: Helios deployable helical antenna [35]

• TXRX: ISIS VHF downlink/UHF uplink full duplex transceiver [36]

• Battery: BAox high energy density battery array [37]

• EPS: Crystalspace P1U Vasik [38]

• Solar panels: CubeSat Solar panel DHV-CS-10 [39]

• ADCS: CubeADCS 3-Axis with medium wheels [40]
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• Imager: Chameleon multispectral imager with a ground sample distance of 9.6m at 500km
[41]

With the exception of the propulsion system and the imager, the components listed above serve
only to estimate the cost and mass required for the satellite and do not represent a finalized design.
The propulsion system dictates the maneuvers that can be performed by the satellite, while the
imager dictates the image resolution, limiting the maximum altitude of the satellites.

A set of rideshare options was simulated by taking the two line elements (TLEs) of satellites
launched over a thirty day period from CelesTrak [42]. This sampling is meant to be an example set
of launches and is not indicative of the launches that would be available for an actual mission. The
results will vary based on the particular set of launches available. The orbital elements correspond-
ing to the TLEs are shown in Table 1, where each row represents a different launch with the angles
are in degrees and the semimajor axis in kilometers.

Table 1: Rideshare orbital elements

Launch a e i ω Ω ν

1 6823.022412 0.001786 92.926 118.341 253.494 159.764
2 6823.027313 0.001787 92.927 118.593 253.496 159.934
3 6823.120130 0.001694 92.922 124.211 253.482 156.234
4 6823.147009 0.001802 92.926 124.645 253.500 156.363
5 6965.904940 0.001422 97.852 153.239 158.268 10.775
6 6965.508578 0.001364 97.854 151.101 158.269 8.811
7 28240.632554 0.011723 55.036 176.279 156.866 125.480
8 28243.220407 0.011631 55.037 176.374 156.866 124.841
9 7090.054923 0.009126 98.564 337.412 340.248 241.471
10 15699.721098 0.580781 55.040 172.480 153.738 221.090
11 15531.095671 0.572284 26.935 195.921 240.373 154.915
12 7160.850292 0.001113 98.563 165.345 339.683 177.020
13 6673.408249 0.002082 51.572 340.257 237.863 19.745
14 6837.409742 0.001926 91.905 59.592 251.141 163.637
15 6974.981875 0.003213 97.742 174.993 157.961 216.571
16 6784.097759 0.000848 51.580 35.934 237.112 315.785
17 42133.484524 0.000957 0.038 96.386 95.943 188.302
18 28819.893645 0.008936 54.854 4.595 156.791 179.464

The optimization selects a set of launches, assigns satellites to each selected launch, and sets
a reconfiguration for each launch by setting the change in orbital elements. The satellites’ orbital
elements will be the orbital elements of the launch plus the change in orbital elements. The satellites
will be evenly distributed in true anomaly around the orbit. The transfer is considered feasible if
the final orbit can be reached from the initial orbit, as described in the previous section, within
ten orbits using the available fuel and thrust. A segment of the genome produced by the genetic
algorithm would have the form xi = [launch assignment, number of satellites, ∆a, ∆e, ∆i, ∆ω,
∆Ω, ∆ν]. The genome is permitted to have between one and twenty segments. It is possible that
multiple planes of satellites may be deployed from a single launch by assigning multiple orbital
element changes to one launch. In a simulation of a real-life scenario, it would be beneficial to
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introduce a constraint ensuring that the mass capacity for rideshare of a vehicle is not exceeded.
The total number of satellites launched is not to exceed fifty.

Because the goal of the scenario is to maximize coverage over the state of California, a set of
points evenly spaced with 100 miles between them was generated within the state. A minimum
elevation limit for access of five degrees was imposed. A maximum ground sample distance (GSD)
of 25m is also required for access. The satellites are assumed to be able to slew sufficiently to cover
the area of interest, so no constraint is imposed on the off-boresight angle of the satellite. Some
of the launch opportunities, such as launch 17, are incompatible with the mission requirements due
to their high altitude, which would result in a GSD that violated the access requirements. These
launches are still included in the optimization to test the algorithm’s ability to avoid infeasible
solutions.

The quality of access provided by a given solution is evaluated using two metrics: the average
time average gap (TAG) of the ground points and the maximum revisit time over all points. The
TAG of a ground point is defined as [43]:

Ḡ =

∑gaps(Gap Duration)2

Coverage Interval
(31)

TAG provides the average time until next coverage for a given ground point when starting from
an arbitrary time in the scenario. The maximum revisit time over all points calculates the longest
time that each point is without coverage, then takes the largest of these values. The total number
of satellites is minimized in order to survey the entire solution space and to determine the coverage
possible at varying asset levels.

Due to the relatively high failure rate of nanosatellites, it is necessary to consider the possibility
that some of the satellites may fail prematurely. The impact of this possibility is measured by de-
termining the worst-case maximum revisit time over all points when twenty percent of the satellites
are removed from the scenario. The linear programming approach discussed in the previous section
is applied in order to get this worst-case objective value. The optimization problem therefore has
four objectives: minimize average TAG, minimize maximum revisit time over all points, minimize
degraded maximum revisit time over all points, and minimize number of satellites.

A scenario time of ninety days is used when calculating the nominal objectives. The degraded
analysis uses a ten day scenario time to limit the size of the linear programming problem. The
simulation is run until ten successive generations produce no improvement in the archive. A new
population is then generated using the archive and randomly generated members, as described in
Ref. [16]. An initial population of 200 candidates is used, with the population being scaled each run
to be four times the archive size. This process is repeated for ten runs. For comparison purposes,
optimization is performed on a Walker delta constellation with up to fifty satellites and up to twenty
planes. The Walker formulation does not undergo reconfiguration. It seeks to minimize the total
number of planes in addition to the objectives stated for the rideshare scenario.

RESULTS

The rideshare simulation produced a Pareto frontier with 31 results. The Pareto frontier is shown
in Fig. 4. The TAG of the Pareto-optimal solutions ranges from 52 minutes for the larger constel-
lations to 11.2 hours for a single satellite. The maximum revisit time over all points takes values
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Figure 4: Pareto frontier for rideshare-
launched constellation.

Figure 5: Average time average gap for
rideshare-launched constellation.

Figure 6: Pareto-optimal constellation of 30 satellites

between 3.8 and 12.4 hours. The degraded maximum revisit time over all points takes values be-
tween 5.0 and 11.6 hours, discounting the single-satellite case. Note the diminishing returns gained
by adding satellites beyond the tenth. Indeed, the objective values change very slightly between
20 and 35 satellites. Fig. 5 shows the number of launches used by each solution. The theoretical
FireSat-II example in Ref. [7] requires a revisit time of eight hours to identify nascent forest fires.
The imaging capability provided by the rideshare constellations is sufficient for detection on such a
timeline. The rideshare constellation performance is inferior to proposed constellation designs such
as the FUEGO program, which achieves 25 minute revisit times using dedicated launches [44].

An example rideshare constellation using 30 satellites is shown in Fig. 6. The constellation
consists of two sets of near-polar orbits spaced about ninety degrees apart in RAAN, plus a pair
of orbits near 50 degrees in inclination. During the ninety day simulation time, the polar orbits
maintain similar relative positions, but the relative position of the 50 degree orbit with respect to the
polar orbits varies.

The stagnation of the values with increasing numbers of satellites highlights the critical flaw in
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rideshare constellations. Because the initial launch values are fixed in such a way that may not be
beneficial to the rideshare mission, the resulting constellation can have large gaps in coverage when
the rideshare orbits do not overlap in a fortuitous manner. The ability to maneuver the satellites
helps to mitigate the problem, but the high ∆v cost to enact a change in orbital plane impedes the
constellation’s ability to achieve the uniform formation often used in constellation design.

There are two ways to increase the performance of the rideshare constellation. The first is to
have a greater number of rideshare opportunities available. This simulation used only one month’s
worth of launches. By permitting the satellites to be launched over a longer time period, more
rideshares become available, increasing available orbit diversity. However, spreading the launch of
the constellation over a longer period of time decreases the overall life of the constellation, since the
time from when to constellation is fully population to when the first satellite reaches the end of its
life is decreased. The other method for increasing constellation performance and spacing between
orbits is to increase the maneuvering capability of the satellites. Manuevering can be improved
by either increasing the amount of fuel onboard the satellites or by using a low-thrust, high Isp
electric propulsion system. The latter case increases the overall ∆v, but requires more time to get
the constellation to its final configuration.

Compare the performance of the rideshare constellations to the Walker constellations optimized
using the genetic algorithm. The Pareto frontier for the Walker case is shown in Fig. 7. Clearly,
the Walker constellations offer superior performance over the rideshare constellations. A Walker
constellation of four satellites has comparable performance to a rideshare constellation of 15-20
satellites. Furthermore, satellites can be added to the Walker constellation to improve coverage
until continuous coverage is reached, whereas the rideshare constellation has unfillable gaps due
to the relative placement of the rideshare orbits. However, the cost of launching four satellites on
dedicated rides is likely greater than the cost of the additional satellites needed for the rideshare
constellation. The cost for the components listed in the previous section is $283K for everything
except the propulsion system, which is still in development and does not have a published price. If
the total cost is approximately $400K with the propulsion system, the satellite cost would be $6M for
the rideshare constellation and $1.6M for the Walker constellation. Neither price includes the cost
of testing or software development. The Walker constellation would require two to four launches
to LEO, a cost of $36.8M-73.6M using Pegasus XL rockets [7]. Conversely, with a $30K per
kilogram rideshare launch cost and a spacecraft weighing about 10kg, the rideshare launch cost is
only $4.5M. Therefore, if the performance limitations of the rideshare constellation are acceptable,
a constellation can be developed for about a quarter of the cost of a traditional Walker constellation.
Fires in the state of California cause billions of dollars in damage each year, so the low cost of a fire
detection constellation has the potential to pay for itself many times over.

CONCLUSIONS

This paper outlines new methodologies for reachability and resilience analyses for constellations
of nanosatellites. These methods leverage linear programming techniques and offer savings in com-
putation time over other methods. It also analyzes the ability of a constellation built using only
rideshare opportunities to provide coverage over California to perform fire detection. An average
time average gap of less than one hour is achievable, as is a maximum revisit time over all points
of less than four hours. The rideshare performance is compared to the performance of a Walker
constellation. Although the Walker constellation can achieve arbitrary levels of coverage through
the addition of further satellites, rideshare constellations are capable of meeting the capabilities of
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Figure 7: Pareto frontier for Walker constellation.

small Walker constellations at greatly reduced cost.
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